Field Trial Testing of Q-Tough Wear Resistant Production Tubing

Dave Waldbillig, Ph.D, P.Eng.
March 7, 2019
North American Artificial Lift Conference 2019
Quantiam Technologies Inc. develops and commercializes disruptive new products based on Advanced Materials, Catalysts, Coatings and Surfaces.

Petrochemical
- **CAMOL**: Anti-Fouling Coatings for Olefins
- **SGX**: Super Coke Gasification
- **Inert-1300**: Inert at extreme temperatures

CleanTech & Alternative Energy
- **Green Chemistry**
 - Green H₂ (Water Splitting)
 - Green Fuels (CO₂ Splitting)
- **Methanol+**
 - Captured Carbon Conversion

Oil & Gas and Oil Sands
- **Wear and Corrosion Resistant Coatings**
 - Internal tube surfaces
 - External surfaces
 - Complex Geometries

Aerospace & Defence
- **High Temperature Wear & Corrosion Coatings for Weapon Barrels**
- **Ballistic Protection for Personnel and Vehicles**
Applied R&D and Advanced Manufacturing

Quantiam has extensive in-house materials development, characterization and advanced manufacturing facilities.
Quantiam’s cost-effective, proprietary coating manufacturing platform provides:

1. Non line-of-sight deposition (internal, external or complex geometries)
2. Metallurgical bonding for superior adhesion
3. Micro-composite structure for excellent toughness and thermal shock resistance
4. Macro coating thicknesses ranging from 50µm - 1mm (0.002” - 0.040”)
5. Part lengths up to 15 feet long
6. Compatibility with a wide variety of steels and other alloys
7. Customizable
Wear challenges in unconventional wells

- High costs are driven by the frequency of wear-induced failures and the cost of workovers.
- Sliding wear between the sucker rod and the inside of production tubing is among the most common causes of failures.
- Q-Tough was developed to address this issue and has been successfully field trialed in the Bakken region of North Dakota.
Q-Tough was developed to solve wear challenges in production tubing

- Cost-effective **non-line-of-sight** deposition process
- **High toughness** eliminates special handling
- **Smooth surface finish** and **unique composition** enables long runtimes **without accelerating wear of other components**
- Lab and field trial testing validates performance
Q-Tough

Metallurgical bonding

- No special handling requirements
- Eliminates delamination

Microcomposite structure

- Well dispersed hard particles (light grey)
- Ductile, corrosion resistant metallic matrix (grey)
Pin-on-Disk Wear Testing (ASTM G99)

Test conditions: Dry Sliding Wear
- 226.2 m sliding distance
- 20 N load, Si₃N₄ ball
- 300 rpm
- Volume loss measured optically

Shorter bars indicate higher wear resistance

Confidential
Pin-on-Disk Wear Testing (ASTM G99)

Test conditions: Dry Sliding Wear
- 226.2 m sliding distance
- 20 N load, Si₃N₄ ball
- 300 rpm
- Volume loss measured optically

Shorter bars indicate higher wear resistance

<table>
<thead>
<tr>
<th>Material</th>
<th>Average Volume Loss (mm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q-Tough</td>
<td>0.0007</td>
</tr>
<tr>
<td>PTA (65% WC)</td>
<td>0.006</td>
</tr>
<tr>
<td>Electroplated Cr</td>
<td>0.352</td>
</tr>
<tr>
<td>Carbon Steel</td>
<td>0.349</td>
</tr>
</tbody>
</table>

> 500x vs carbon steel
Sand Abrasion Wear Testing (ASTM G65)

Test Conditions: Abrasive Wear
- Procedure A: 6000 revolutions
- Load: 30 lbf
- Sand flow rate: 300-400 g/min

Shorter bars indicate higher wear resistance
Sand Abrasion Wear Testing (ASTM G65)

Test Conditions: Abrasive Wear
 • Procedure A: 6000 revolutions
 • Load: 30 lbf
 • Sand flow rate: 300-400 g/min

Shorter bars indicate higher wear resistance

15x vs carbon steel
Slurry Jet Erosion Testing

Test Conditions: Slurry Wear
- Slurry flow rate: 16 m/s
- Erodent: AFS 50-70 silica sand
- Solid particle concentration: 9.1 wt%
- Impact angle: 20°, 45°, 90°
- Test duration: 2 hours

Shorter bars indicate higher wear resistance
Slurry Jet Erosion Testing

Test Conditions: Slurry Wear
- Slurry flow rate: 16 m/s
- Erodent: AFS 50-70 silica sand
- Solid particle concentration: 9.1 wt%
- Impact angle: 20°, 45°, 90°
- Test duration: 2 hours

Confidential Shorter bars indicate higher wear resistance

6 to 29x vs steel

AR400 steel

27%Cr 3%C white iron

Q-Tough

Cr Carbide overlay

Slurry Jet Erosion Volume Loss (mm³)
Q-Tough Field Trials

GOAL: To extend runtimes by installing coated tubes in known problem areas of the well
Q-Tough Field Trial Installations (44 wells)

<table>
<thead>
<tr>
<th>Total wells installed</th>
<th>Currently active</th>
<th>Pulled early (no Q-Tough failure)</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>24</td>
<td>20</td>
</tr>
</tbody>
</table>

Run time (days)

- Prior Runtime
- Current Runtime

- 2015 Install
- 2016 Install
- 2017 Install

Confidential
Q-Tough Field Trial Results

- 3x - 4x increase in runtime (and counting)
- Earliest installations more than 4 years in service
- No coating related failures to date
- Benefits achieved by installing coated tubes in 60 to 100 ft in problematic areas of well
- No adverse effects on other components
Evaluation of field trial Q-Tough tubing

- Four Q-Tough coated tubes were removed early from one well during a workover to get an early snap-shot of coating degradation
- Well was worked over to replace a corroded pump plunger
- Well operated for 506 days before the workover
- This represents a **1.4x increase in runtime** compared to the well’s previous runtime
Evaluation of field trial Q-Tough tubing
Borescope and cross-sectional coating analysis

- All four tubes were non-destructively inspected with a borescope
- No damaged areas were observed

- Cross sectional samples were taken from the middle and ends of each tube
- Coating damage assessed with scanning electron microscopy (SEM)
Typical Field Trial Q-Tough Coating Microstructure

(506 days of operation downhole, 1.4x typical runtime)

Damaged coating
<25 µm thick
(<1.0 thou)

Undamaged coating
~350 µm thick
(~14 thou)

Metallurgical bond
Carbon steel
Typical Field Trial Q-Tough Coating Microstructure

(506 days of operation downhole, 1.4x typical runtime)

93% coating thickness remains after 500+ days

Damaged coating
<25 μm thick
(<1.0 thou)

Undamaged coating
~350 μm thick
(~14 thou)

Metallurgical bond

Carbon steel
Q•Tough coatings were developed to address wear challenges in production tubing

- **Q-Tough coatings have:**
 - Composite microstructures
 - Metallurgical bonding
 - Cost-effective non-line-of-sight manufacturing
 - Smooth surface finish and unique composition = long runtimes without accelerated wear of components

- **Field trials** of Q-Tough coatings have been installed in 44 wells in the Bakken region of North Dakota
 - In 4 years operation no coating related failures have occurred
 - Early stage evaluation of field trial coating observed that 93% of the coating remains undamaged after >500 days downhole
Coating Property Summary

<table>
<thead>
<tr>
<th>Property</th>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sliding Wear Resistance (ASTM G99)</td>
<td>>500x better compared to uncoated J55 carbon steel</td>
</tr>
<tr>
<td>Sand Abrasion Wear Resistance (ASTM G65)</td>
<td>15x better compared to uncoated J55 carbon steel</td>
</tr>
<tr>
<td>Slurry Jet Erosion Resistance</td>
<td>Comparable to CrC overlays and white cast irons</td>
</tr>
<tr>
<td>Substrate Compatibility</td>
<td>Carbon and alloy steel, stainless steel, Ni-based alloys</td>
</tr>
<tr>
<td>Part Sizes and Geometries</td>
<td>Internal and External surfaces</td>
</tr>
<tr>
<td></td>
<td>Tubular and complex geometries</td>
</tr>
<tr>
<td></td>
<td>Lengths up to 15’ long</td>
</tr>
<tr>
<td>Average Microhardness</td>
<td>~800 Hv (63 HRC)</td>
</tr>
<tr>
<td>Coating Thickness</td>
<td>50-1000 µm (0.002” -0.040”)</td>
</tr>
<tr>
<td>Substrate-Coating Bond Strength</td>
<td>Excellent due to Metallurgical Bond</td>
</tr>
<tr>
<td>Coating Porosity</td>
<td>Minimal</td>
</tr>
<tr>
<td>Appearance</td>
<td>Smooth as coated finish</td>
</tr>
<tr>
<td></td>
<td>Coating applied as Light Grey</td>
</tr>
<tr>
<td></td>
<td>Finishes to a high metallic lustre when polished</td>
</tr>
</tbody>
</table>

Confidential